НИКОЛАЙ ЕФИМОВИЧ ЗЁРНОВ И ПЕРВАЯ ЗАЩИТА ДОКТОРСКОЙ ДИССЕРТАЦИИ ПО МАТЕМАТИКЕ В РОССИИ
НИКОЛАЙ ЕФИМОВИЧ ЗЁРНОВ И ПЕРВАЯ ЗАЩИТА ДОКТОРСКОЙ ДИССЕРТАЦИИ ПО МАТЕМАТИКЕ В РОССИИ
Аннотация
Код статьи
S0205-96060000479-3-
Тип публикации
Статья
Статус публикации
Опубликовано
Аннотация

В статье рассмотрена история первой в Российской империи защиты докторской диссертации по математике, которая произошла в 1837 г. Автором этого труда, посвященного дифференциальным уравнениям в частных производных, был Николай Ефимович Зёрнов (1804–1862).

К моменту написания диссертации в Западной Европе уже был накоплен достаточно богатый материал, касавшийся методов интегрирования отдельных видов уравнений в частных производных. Однако он не был систематизирован, что не способствовало развитию теории дифференциальных уравнений с частными производными как отдельной области математики. Поставив себе задачу ликвидировать этот пробел, Зёрнов с ней блестяще справился.

Построение диссертации Зёрнова имело оригинальный характер. В первой ее главе рассматривались вопросы интегрирования уравнений в частных производных в конечном виде, во второй – виды интегралов (решений) этих уравнений, а в третьей – геометрическая теория уравнений в частных производных.

В статье впервые восстанавливаются некоторые факты биографии ученого, а также анализируется то, как происходила защита диссертации. Показано, что в своем исследовании Зёрнов внес ряд усовершенствований и упрощений в методы интегрирования дифференциальных уравнений в частных производных, предложенные предшественниками, и изложил эти результаты в доступной форме на русском языке.

Труд Зёрнова способствовал повышению уровня математического образования в университетах России, в особенности Московском. Во многом именно благодаря его диссертации теория дифференциальных уравнений с частными производными стала одной из излюбленных областей, в которых вели свои исследования московские математики (А. Ю. Давидов, В. В. Преображенский, Д. Ф. Егоров).

Ключевые слова
Н. Е. Зёрнов, первая докторская диссертация по математике в России, история дифференциальных уравнений в частных производных
Классификатор
Дата публикации
01.10.2018
Всего подписок
8
Всего просмотров
1040
Оценка читателей
0.0 (0 голосов)
Другие версии
S0205-96060000479-3-1 Дата внесения исправлений в статью - 20.10.2020
Цитировать   Скачать pdf

Библиография



Дополнительные библиографические источники и материалы

1. Antropova, V. I. (1972) Uravneniia v chastnykh proizvodnykh [Partial Differential Equations], in: Iushkevich, A. P. (ed.) Istoriia matematiki s drevneishikh vremen do nachala XIX stoletiia [History of Mathematics from the Ancient Times to the Early 19th Century]. Moskva: Nauka, vol. 3, pp. 409-451. 
2. Demidov, S. S. (1973) K istorii teorii differentsial'nykh uravnenii s chastnymi proizvodnymi [Towards the History of the Theory of Partial Differential Equations], in: Istoriko-matematicheskie issledovaniia [Studies on the History of Mathematics]. Moskva: Nauka, iss. 18, pp. 181-202.
3. Demidov, S. S. (1976) O poniatii resheniia differentsial'nykh uravnenii s chastnymi proizvodnymi v spore o kolebanii struny v XVIII veke [On the Concept of Solution of Partial Differential Equations in the 18th Century Dispute over the Vibrating String], in: Istoriko-matematicheskie issledovaniia [Studies on the History of Mathematics]. Moskva: Nauka, iss. 21, pp. 158-182.
4. Demidov, S. S. (1980) Razvitie issledovanii po uravneniiam s chastnymi proizvodnymi pervogo poriadka v XVIII-XIX vv. [Development of the Studies on First-Order Partial Differential Equations in the 18th and 19th Century], in: Istoriko-matematicheskie issledovaniia [Studies on the History of Mathematics]. Moskva: Nauka, iss. 25, pp. 71-103.
5. Grattan-Guinnes, I. (1990) Convolutions in French Mathematics, 1800-1840: From the Calculus and Mechanics to Mathematical Analysis and Mathematical Physics. In 3 vols. Basel, Boston, and Berlin: Birkhäuser.
6. Iushkevich, A. P. (1950) Istoricheskii ocherk [A Historical Essay], in: Stepanov, V. V. Kurs differentsial'nykh uravnenii. 5-e izd. [A Course in Differential Equations. 5th ed.]. Moskva: Gostekhizdat, pp. 428-458.
7. Iushkevich, A. P. (1965) O neopublikovannykh rannikh rabotakh M. V. Ostrogradskogo [On the Unpublished Early Works by M. V. Ostrogradsky], in: Istoriko-matematicheskie issledovaniia [Studies on the History of Mathematics]. Moskva: Nauka, iss. 16, pp. 11-48.
8. Iushkevich, A. P. (1968) Istoriia matematiki v Rossii do 1917 goda [History of Mathematics in Russia before 1917]. Moskva: Fizmatgiz.
9. Liubimov, N. A. (1864) Vospominaniia o N. E. Zernove. Rech' 12 ianvaria 1864 g [The Recollections of N. E. Zernov. The Speech on January 12, 1864]. Moskva: Tipografiia Imperatorskogo Moskovskogo universiteta.
10. Lützen, J. (1982) The Prehistory of the Theory of Distributions. Berlin, Heidelberg, and New York: Springer.
11. Obshchii ustav imperatorskikh rossiiskikh universitetov [General Charter of the Imperial Russian Universities] (1875), in: Sbornik postanovlenii po Ministerstvu narodnogo prosveshcheniia. 2-e izd. [Collected Ordinances of the Ministry of Public Education. 2nd ed.]. Sankt-Peterburg: Tipografiia V. S. Balasheva, vol. 2, col. 969-995.
12. Petrova, S. S. (1965) Printsip Dirikhle v rabotakh Rimana [The Dirichlet Principle in B. Riemann's Works], in: Istoriko-matematicheskie issledovaniia [Studies on the History of Mathematics]. Moskva: Nauka, iss. 16, pp. 295-310.
13. Petrova, S. S. (1985) O. Khevisaid i razvitie simvolicheskogo ischisleniia [O. Heaviside and the Development of the Symbolic Calculus], in: Istoriko-matematicheskie issledovaniia [Studies on the History of Mathematics]. Moskva: Nauka, iss. 28, pp. 98-122.
14. Shraer, M. G. (1973) Metody A. Puankare v teorii potentsiala [A. Poincaré's Methods in Potential Theory], in: Istoriko-matematicheskie issledovaniia [Studies on the History of Mathematics]. Moskva: Nauka, iss. 18, pp. 203-217.
15. Simonov, N. I. (1954) O nauchnom nasledii L. Eilera v oblasti differentsial'nykh uravnenii [On L. Euler's Scientific Heritage in the Field of Differential Equations], in: Istoriko-matematicheskie issledovaniia. Moskva: GITTL, iss. 7, pp. 513-595.
16. Simonov, N. I. (1974) O giperbolicheskikh differentsial'nykh uravneniiakh u L. Eilera i O. Koshi [On Hyperbolic Differential Equations in the Works by L. Euler and O. Cauchy], in: Istorikomatematicheskie issledovaniia [Studies on the History of Mathematics]. Moskva: Nauka, iss. 19, pp. 132-190.
17. Sologub, V. S. (1975) Razvitie teorii ellipticheskhih uravnenii v 18 i 19 stoletiiakh [Development of the Theory of Elliptic Equations in the 18th and 19th Century]. Kiev: Naukova dumka.
18. Zernov, N. E. (1837) Rassuzhdenie ob integratsii uravnenii s chastnymi differentsialami [A Treatise on the Integration of Equations with Partial Differentials]. Moskva: Universitetskaia tipografiia.
19. Zernov, V. D. (2005) Zapiski russkogo intelligenta [The Notes of a Russian Intellectual]. Moskva: Indrik.

Комментарии

Сообщения не найдены

Написать отзыв
Перевести